Using data normalization to better compare change over time in regions with different population sizes

I use data normalization to better compare the changes in refugee outflows in different regions from 2010 to 2022. Four regions are identified with large increases over their 2010 baseline.
R
Author
Published

Friday, August 25, 2023

For this post, I’ll be using the Week 34 Tidy Tuesday dataset, which contains data on refugee movement around the world. I want to look at the change in refugee outflows over time in different nations, and see if I can identify countries with meaningfully large increases in refugee outflows.

library(tidyverse)
library(wbstats)
library(gghighlight)
df <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-08-22/population.csv')

Data cleaning

First, some data cleaning.

To keep things simple, I’m only going to keep nations that had refugee data for all of the 13 years spanning 2010-2022.

(df %>%
  group_by(coo_name) %>%
  summarize(n_years = n_distinct(year)) %>%
  filter(n_years == 13))$coo_name -> coo_to_keep

df %>%
  filter(coo_name %in% coo_to_keep) %>%
  select(coo_name,
         coo_iso,
         year,
         refugees) -> df_clean

Normalization

Next, to make comparisons between nations more apples-apples, I’m going to do some normalization.

I want to normalize in terms of population size and change over baseline.

First, I’ll fetch population data from World Bank using wbstats.

wb_search("SP.POP.TOTL", fields='indicator_id') %>%
  head(1)
# A tibble: 1 × 3
  indicator_id indicator         indicator_desc                                 
  <chr>        <chr>             <chr>                                          
1 SP.POP.TOTL  Population, total Total population is based on the de facto defi…
pops <- wb_data("SP.POP.TOTL", start_date = 2010, end_date = 2022) %>%
  select(iso3c, date, "SP.POP.TOTL") %>%
  rename(pop = "SP.POP.TOTL",
         iso = iso3c)

df_clean %>%
  left_join(pops, by=c('coo_iso'='iso', 'year'='date')) -> df_enriched

df_enriched %>%
  head()
# A tibble: 6 × 5
  coo_name               coo_iso  year refugees        pop
  <chr>                  <chr>   <dbl>    <dbl>      <dbl>
1 Afghanistan            AFG      2010        0   28189672
2 Iran (Islamic Rep. of) IRN      2010       30   75373855
3 Iraq                   IRQ      2010        6   31264875
4 Pakistan               PAK      2010     6398  194454498
5 Egypt                  EGY      2010        5   87252413
6 China                  CHN      2010        6 1337705000

Next, I’ll compute a new variable: refugees_per_1k_pop that represents refugees leaving per 1000 persons in the original population. This is a good way to normalize, because we’d expect a larger count of refugees leaving from countries that had more people to begin with.

df_enriched %>%
  group_by(year, coo_name, coo_iso) %>%
  summarize(refugees = sum(refugees),
            pop = first(pop)) %>%
  mutate(refugees_per_1k_pop = refugees/(pop/1000)) -> df_enriched

df_enriched %>%
  head()
# A tibble: 6 × 6
# Groups:   year, coo_name [6]
   year coo_name            coo_iso refugees      pop refugees_per_1k_pop
  <dbl> <chr>               <chr>      <dbl>    <dbl>               <dbl>
1  2010 Afghanistan         AFG      3054699 28189672            108.    
2  2010 Albania             ALB        14771  2913021              5.07  
3  2010 Algeria             DZA         6665 35856344              0.186 
4  2010 Angola              AGO       134851 23364185              5.77  
5  2010 Antigua and Barbuda ATG           28    85695              0.327 
6  2010 Argentina           ARG          553 40788453              0.0136

I’ll do a bit of cleaning again, to remove those nations for whom I didn’t have a complete record of population data, and so couldn’t calculate refugees_per_1k_pop for every year.

(df_enriched %>%
  group_by(coo_name) %>%
  summarize(n_years = sum(refugees_per_1k_pop > 0, na.rm=T)) %>%
  filter(n_years == 13))$coo_name -> coo_to_keep_2

df_enriched %>%
  filter(coo_name %in% coo_to_keep_2)-> df_enriched_clean

Next, I’ll use 2010 as a baseline year, and subtract each year’s value from that. This will allow me to measure change over time from this common baseline, and compare nations in terms of a normalized change.

df_enriched_clean %>%
  filter(year == 2010) %>%
  group_by(coo_name) %>%
  summarize(baseline_refugees_per_1k_pop = sum(refugees)/(first(pop)/1000)) -> baseline_year

df_enriched_clean %>%
  left_join(baseline_year, by='coo_name') %>%
  mutate(change_from_baseline = refugees_per_1k_pop - baseline_refugees_per_1k_pop) -> df_enriched_clean

df_enriched_clean %>%
  head()
# A tibble: 6 × 8
# Groups:   year, coo_name [6]
   year coo_name            coo_iso refugees      pop refugees_per_1k_pop
  <dbl> <chr>               <chr>      <dbl>    <dbl>               <dbl>
1  2010 Afghanistan         AFG      3054699 28189672            108.    
2  2010 Albania             ALB        14771  2913021              5.07  
3  2010 Algeria             DZA         6665 35856344              0.186 
4  2010 Angola              AGO       134851 23364185              5.77  
5  2010 Antigua and Barbuda ATG           28    85695              0.327 
6  2010 Argentina           ARG          553 40788453              0.0136
# ℹ 2 more variables: baseline_refugees_per_1k_pop <dbl>,
#   change_from_baseline <dbl>

Identifying regions of interest

Next, I want to identify a smaller set of “interesting” COOs that have experienced large increases over the baseline. I’ll identify an upper bound percentile of max change over baseline, and then I’ll use a value that approximates that as a filter. This gives me 4 “interesting” nations.

df_enriched_clean %>%
  group_by(coo_name) %>%
  summarize(max_change_from_baseline = max(change_from_baseline)) %>%
  summarize(p90_change = quantile(max_change_from_baseline, .975, na.rm=T))
# A tibble: 1 × 1
  p90_change
       <dbl>
1       30.0
df_enriched_clean %>%
  group_by(coo_name, coo_iso) %>%
  summarize(max_change_from_baseline = max(change_from_baseline),
            last_value = last(change_from_baseline, order_by=year)) %>%
  filter(max_change_from_baseline > 32) -> coos_with_large_changes_over_baseline
`summarise()` has grouped output by 'coo_name'. You can override using the
`.groups` argument.
coos_with_large_changes_over_baseline
# A tibble: 4 × 4
# Groups:   coo_name [4]
  coo_name             coo_iso max_change_from_baseline last_value
  <chr>                <chr>                      <dbl>      <dbl>
1 Central African Rep. CAF                         99.8       98.7
2 Eritrea              ERI                         76.9       67.3
3 Syrian Arab Rep.     SYR                        343.       295. 
4 Ukraine              UKR                        149.       149. 

Data visualization

Finally, I’ll plot change over the 2010 baseline (in refugees per 1k population), and highlight the 4 interesting nations identified above.

I’ll use this to help me pick colors for the ggtitle text.

scales::show_col(scales::hue_pal()(4))

df_enriched_clean %>%
  mutate(class = coo_name %in% coos_with_large_changes_over_baseline$coo_name,
         year = as.Date(paste0(as.character(year), '-01-01'))) %>%
  arrange(year, desc(class)) %>%
  mutate(coo_iso = fct_inorder(coo_iso)) %>%
  ggplot(aes(x=year, y=change_from_baseline, color=coo_iso)) +
    geom_line() +
    scale_x_date(date_labels="%Y", date_breaks="1 year") +
    ggthemes::theme_solarized() +
    gghighlight::gghighlight(class == TRUE) +
    ggtitle("<strong><span style='color:#00BFC4'>SYR</span></strong>, <strong><span style='color:#C77CFF'>UKR</span></strong>, <strong><span style='color:#F8766D'>CAF</span></strong>, and <strong><span style='color:#7CAE00'>ERI</span></strong> experienced large increases in<br>normalized refugee outflow (i.e., refugees per 1k population),<br> compared to their 2010 baseline.") +
    xlab('Year') +
    ylab('Change in Normalized Refugee Outflow*') +
    labs(caption = "<span style='font-size:7pt'>*Change in refugees per 1k population from the baseline value observed in 2010.</span>") +
    theme(plot.title = ggtext::element_markdown(),
          plot.caption = ggtext::element_markdown()) -> plot
Warning: Tried to calculate with group_by(), but the calculation failed.
Falling back to ungrouped filter operation...
plot